Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1715568

ABSTRACT

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Subject(s)
Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Interaction Mapping
2.
Emerg Microbes Infect ; 9(1): 2663-2672, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-919316

ABSTRACT

Rapid accumulation of viral proteins in host cells render viruses highly dependent on cellular chaperones including heat shock protein 90 (Hsp90). Three highly pathogenic human coronaviruses, including MERS-CoV, SARS-CoV and SARS-CoV-2, have emerged in the past 2 decades. However, there is no approved antiviral agent against these coronaviruses. We inspected the role of Hsp90 for coronavirus propagation. First, an Hsp90 inhibitor, 17-AAG, significantly suppressed MERS-CoV propagation in cell lines and physiological-relevant human intestinal organoids. Second, siRNA depletion of Hsp90ß, but not Hsp90α, significantly restricted MERS-CoV replication and abolished virus spread. Third, Hsp90ß interaction with MERS-CoV nucleoprotein (NP) was revealed in a co-immunoprecipitation assay. Hsp90ß is required to maintain NP stability. Fourth, 17-AAG substantially inhibited the propagation of SARS-CoV and SARS-CoV-2. Collectively, Hsp90 is a host dependency factor for human coronavirus MERS-CoV, SARS-CoV and SARS-COV-2. Hsp90 inhibitors can be repurposed as a potent and broad-spectrum antiviral against human coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Host Microbial Interactions/drug effects , Lactams, Macrocyclic/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , A549 Cells , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Intestines/virology , Organ Culture Techniques , RNA, Small Interfering , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL